加載中...

點(diǎn)擊這里給我發(fā)消息

QQ群:417857029

新產(chǎn)品·新技術(shù)信息

研究人員開發(fā)自交聯(lián)水凝膠來用于例如工業(yè)密封膠的潛在工業(yè)應(yīng)用上

來源:林中祥膠粘劑技術(shù)信息網(wǎng)2012年03月06日

閱讀次數(shù):

Researchers Develop Self-healing Hydrogel for Potential Applications Like Industrial Sealants

SAN DIEGO, Calif. -- University of California, San Diego bioengineers have developed a self-healing hydrogel that binds in seconds, as easily as Velcro, and forms a bond strong enough to withstand repeated stretching. The material has numerous potential applications, including medical sutures, targeted drug delivery, industrial sealants and self-healing plastics, a team of UC San Diego Jacobs School of Engineering researchers reported in the online Early Edition of the Proceedings of the National Academy of Sciences.

Hydrogels are made of linked chains of polymer molecules that form a flexible, jello-like material similar to soft-tissues. Until now, researchers have been unable to develop hydrogels that can rapidly repair themselves when a cut was introduced, limiting their potential applications. The team, led by Shyni Varghese, overcame this challenge with the use of "dangling side chain" molecules that extend like fingers on a hand from the primary structure of the hydrogel network and enable them to grasp one another.

"Self-healing is one of the most fundamental properties of living tissues that allows them to sustain repeated damage," says Varghese. "Being bioengineers, one question that repeatedly appeared before us was if one could mimic self-healing in synthetic, tissue-like materials such as hydrogels. The benefits of creating such an aqueous self-healing material would be far-reaching in medicine and engineering."

To design the side chain molecules of the hydrogel that would enable rapid self-healing, Varghese and her collaborators performed computer simulations of the hydrogel network. The simulations revealed that the ability of the hydrogel to self-heal depended critically on the length of the side chain molecules, or fingers, and that hydrogels having an optimal length of side chain molecules exhibited the strongest self-healing. When two cylindrical pieces of gels featuring these optimized fingers were placed together in an acidic solution, they stuck together instantly. Vargheses lab further found that by simply adjusting the solutions pH levels up or down, the pieces weld (low pH) and separate (high pH) very easily. The process was successfully repeated numerous times without any reduction in the weld strength.

Ameya Phadke, a fourth year PhD student in Vargheses lab said the hydrogels strength and flexibility in an acidic environment - similar to that of the stomach - makes it ideal as an adhesive to heal stomach perforations or for controlled drug delivery to ulcers.

Such healing material could also be useful in the field of energy conservation and recycling where self-healing materials could help reduce industrial and consumer waste, according to Varghese. Additionally, the rapidity of self-healing in response to acids makes the material a promising candidate to seal leakages from containers containing corrosive acids. To test this theory, her lab cut a hole in the bottom of a plastic container, "healed" it by sealing the hole with the hydrogel and demonstrated that it prevented any leakage.

Moving forward, Varghese and her lab hope to test the material in its envisioned applications on a larger scale. The team also hopes to engineer other varieties of hydrogels that self-heal at different pH values, thereby extending the applications of such hydrogels beyond acidic conditions.

About the UCSD Jacobs School of Engineering

The UCSD Jacobs School of Engineering is a premier research school set apart by our entrepreneurial culture and integrative engineering approach. They are the youngest and fastest rising among the nations top 15 engineering schools, and the largest engineering school in the renown University of California system. The Jacobs Schools mission is to educate tomorrows technology leaders and to seek discoveries that fuel economic prosperity of the nation, and enhance the quality of life for people everywhere. Bioengineering; earthquake and renewal engineering; communications, security and networks; materials; and systems and controls are among their strengths.

  • 標(biāo)簽:
相關(guān)閱讀

本站所有信息與內(nèi)容,版權(quán)歸原作者所有。網(wǎng)站中部分新聞、文章來源于網(wǎng)絡(luò)或會員供稿,如讀者對作品版權(quán)有疑議,請及時與我們聯(lián)系,電話:025-85303363 QQ:2402955403。文章僅代表作者本人的觀點(diǎn),與本網(wǎng)站立場無關(guān)。轉(zhuǎn)載本站的內(nèi)容,請務(wù)必注明"來源:林中祥膠粘劑技術(shù)信息網(wǎng)(www.m.proactivelibertylake.com)".

網(wǎng)友評論

©2015 南京愛德福信息科技有限公司   蘇ICP備10201337 | 技術(shù)支持:南京聯(lián)眾網(wǎng)絡(luò)科技有限公司

客服

客服
電話

1

電話:025-85303363

手機(jī):13675143372

客服
郵箱

2402955403@qq.com

若您需要幫助,您也可以留下聯(lián)系方式

發(fā)送郵箱

掃二
維碼

微信二維碼
主站蜘蛛池模板: 国产无遮挡色视频免费视频| 在线观看a网站| 亚洲护士毛茸茸| 韩国精品福利一区二区三区| 小雪坐莲许老二的胯上| 亚洲娇小性xxxx色| 耻辱にまみれた失禁调教| 国内偷窥一区二区三区视频| 久久免费国产视频| 猫扑两性色午夜视频免费| 国产欧美一区二区精品久久久| 三级黄色在线视频中文| 欧美另类精品xxxx人妖换性| 国产1000部成人免费视频| 44luba爱你啪| 成人爽a毛片在线视频| 亚洲国产美女精品久久久久| 美女的大胸又黄又www又爽| 国产精品林美惠子在线播放| 中文字幕一精品亚洲无线一区| 欧美性a欧美在线| 午夜欧美精品久久久久久久| 亚洲欧美日韩国产一区图片 | 99热在线观看| 日本人六九视频jⅰzzz| 亚洲激情电影在线| 色吊丝最新在线播放网站| 国产精品污WWW一区二区三区| 中文字幕不卡在线高清| 欧美三级不卡在线播放| 免费看黄色视屏| 麻豆国产在线不卡一区二区| 在线视频免费国产成人| 久久er这里只有精品| 欧美性猛交XXXX乱大交3| 午夜一级毛片免费视频| 亚洲六月丁香婷婷综合| 精品久久久久久无码人妻| 国产成人 亚洲欧洲| 97无码人妻福利免费公开在线视频| 成年人黄色大片大全|