加載中...

點擊這里給我發消息

QQ群:417857029

新產品·新技術信息

硅烷表面處理的趨勢

來源:林中祥膠粘劑技術信息網2012年06月12日

閱讀次數:

Trends in Silane Surface Treatments

 

Organosilanes have been around for quite some time. They have provided effective primers and coupling agents for composites, adhesives, and sealants for many years. Because of the bifunctionality of these materials and the variety of end-groups that are possible, they are not easy to specify. (The recent SpecialChem4Adhesives article describes guidelines for selecting the appropriate organosilane for adhesives and sealants.) However, these properties are also what provide organosilanes with a great deal of versatility, and this versatility has lead to applications that were not well known a decade ago.

One example of the modern use of silanes is as a glass treatment for double sided pressure sensitive tapes having a foam carrier.1 These tapes are being used increasingly as glazing materials for window installations. Glass is hydrophilic (water loving) and may lead to performance issues over time in humid or wet environments due to water vapor undercutting the bond line and interfering with normal adhesion of the foamed tape. The silane primer treats the glass surface creating a hydrophobic surface that will act to protect the bond line.

Conventional organosilanes rely on the hydrolysis of their Si-O-R groups and subsequent condensation for their coupling with inorganic surfaces. Human health and environmental concerns are leading to the development of new products with less hydrolysis / condensation by products. These include hydrolyzed, lower alkoxy-containing intermediates or solventless products. Prehydrolyzed silanes under well-controlled conditions, water based silane solutions, solid carrier supported silanes that could be added during extrusion processes, and plasma surface treatments in the presence of silanes are among the approaches being investigated to reduce VOC issues.

Novel silane based metal pretreatments have also been developed as cost effective alternatives to the chromating processes. The new process is a simple dip process, is non-carcinogenic, and has outperformed chromate systems under different test conditions. The surface treatment process provides superior corrosion and adhesion performance.2

Sustainable biocomposites consisting of agriculturally grown fibers and either petroleum based or biobased resin matrices represent yet another use of modern silane technology. Poor fiber/matrix interfacial adhesion can negatively affect the physical properties of the resulting composites due to surface incompatibility between the hydrophilic natural fibers and non-polar polymers. A variety of silanes (mostly trialkoxysilanes) have been found to be effective coupling agents that promote interface adhesion and improve the properties of these composites.3 The silane is considered to modify the highly hydrophilic nature of the surfaces of biofibers such as cellulose, jute, hemp, etc. Once treated these fibers have improved compounding properties and efficiently transfer load to the surrounding resin matrix.

Because silanes require a monomolecular thickness, they provide good primers and adhesion promoters for electrically conductive adhesives. For example, the use of a silane coupling agent in an electrically conductive epoxy adhesive was found to provide a significant improvement in electrical conductivity as well as lap shear strength increase before and after service aging.4 Similar advantages of silane coupling agents were also found in improving the dielectric properties of barium titanate epoxy composites.

Please share your thoughts using the tools below.

References

  1. Silane Glass Treatment AP115, 3M Company.
  2. Subramanian, V. and Ooij, W.J., "Silane Based Metal Pretreatments as Alternatives to Chromating", Surface Engineering, Vol. 15, No. 2, 1999, pp. 169-192.
  3. Xie, C., et. al., "Silane Coupling Agents Used for Natural Fiber / Polymer Composites: A Review", Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 7, 2010, pp. 806-819.
  4. Tan, F., et. al., "Effects of Coupling Agents on the Properties of Epoxy Based Electrically Conductive Adhesives", Int. J. of Adhesion and Adhesives, Vol. 26, No. 6, 2006, pp. 406-413.
  • 標簽:
相關閱讀

本站所有信息與內容,版權歸原作者所有。網站中部分新聞、文章來源于網絡或會員供稿,如讀者對作品版權有疑議,請及時與我們聯系,電話:025-85303363 QQ:2402955403。文章僅代表作者本人的觀點,與本網站立場無關。轉載本站的內容,請務必注明"來源:林中祥膠粘劑技術信息網(www.m.proactivelibertylake.com)".

網友評論

©2015 南京愛德福信息科技有限公司   蘇ICP備10201337 | 技術支持:南京聯眾網絡科技有限公司

客服

客服
電話

1

電話:025-85303363

手機:13675143372

客服
郵箱

2402955403@qq.com

若您需要幫助,您也可以留下聯系方式

發送郵箱

掃二
維碼

微信二維碼
主站蜘蛛池模板: 国产精品久久久久久久久久免费 | 中文字幕人妻无码一夲道| 99re最新这里只有精品| 欧美一级做一a做片性视频 | 欧美亚洲综合网| 国产精品亚洲一区二区三区在线| 亚洲欧美卡通另类| 4408私人影院| 欧美一区二区三区久久综合 | my1136蜜芽入口永不失联版| 精品人妻无码区二区三区| 少妇高潮惨叫喷水在线观看| 午夜伦伦影理论片大片| らだ天堂√在线中文www| 痴汉の电梯在线播放| 大帝AV在线一区二区三区| 亚洲综合小视频| 500福利视频导航| 最近最新中文字幕| 国产午夜福利100集发布| 久久久91精品国产一区二区三区| 色噜噜狠狠一区二区三区| 性按摩xxxx| 亚洲色偷偷偷综合网| 8090在线观看免费观看| 欧洲成人爽视频在线观看| 国产午夜无码精品免费看动漫 | 2022国产成人福利精品视频| 欧美亚洲视频在线观看| 国产小情侣自拍| 中文字幕一区二区三区日韩精品| 精品人妻系列无码人妻免费视频 | 精品国产香港三级| 天天躁日日躁狠狠躁| 亚洲欧美中文日韩欧美| 久久久噜久噜久久gif动图| 日本免费xxxx色视频| 午夜dj在线观看免费高清在线 | 亚洲成a人片在线观看中文app | 免费人成网站在线观看不卡| 91视频完整版高清|